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A density matrix treatment is presented for the vibrational relaxation of the frustrated translational mode of
a molecule adsorbed on a metal surface. The system is modeled as a vibrating adsorbate oscillator coupled
to a bath of harmonic oscillators representing either phonons or electronic density fluctuations. The
integrodifferential equations for time evolution of the density matrix including a (nonmarkovian) delayed
dissipation are solved using a generalized Runge-Kutta scheme. The equations are also solved in the
instantaneous dissipation and the Markov limits, to ascertain their validity. Numerical results are presented
for Na/Cu, CO/Cu, and CO/Pt systems. The population of an initially excited state is given over time for
varying temperatures and shows that memory effects are needed in a proper description valid even at short
times. Calculations of populations for different coupling strengths between the adsorbate species and the
substrate metal surface indicate that a weaker coupling leads to increased oscillation amplitudes and longer
relaxation times. The time evolution of quantum coherence is also described.

1. Introduction

We consider the vibrational relaxation of an atom or molecule
adsorbed on a metal surface and initially excited by collisions
or light absorption, the subject of recent theoretical and
experimental work.1-5 This can be described by a model of an
adsorbed oscillator coupled to a bath of oscillators representing
the excitations of the substrate, a reservoir at a given temper-
ature.6 The surface excitations can be phonons or quantized
electron density fluctuations (electron-hole or plasmon excita-
tions) described by means of creation and annihilation operators.

Our theoretical treatment is based on the reduced density
operator (RDOp)7,8 for the adsorbate species and a model
Hamiltonian with a bilinear coupling between adsorbate and
surface.9,10 The equation of motion for the RDOp contains a
dissipative memory term, which can be written in terms of the
time-correlation function of the reservoir, the metal surface in
our case. This approach allows for a description of temperature
effects on the relaxation of populations and quantum coherence
of the system. Special cases are given by the instantaneous
dissipation limit, with a time-dependent friction coefficient, and
the markovian limit equivalent, in our case to the well-known
Redfield equations.11,12Figure 1 shows a pictorial representation
of delayed dissipation from the primary region (the adsorbate)
to the secondary region (the substrate) over timest and t′.

Operator equations can be transformed introducing a basis
set of vibrational states of the adsorbate, leading to sets of
coupled integrodifferential equations for the reduced density
matrix (RDM). These equations of motion for the RDM are
then solved using a generalized Runge-Kutta type algorithm
for integrodifferential equations13 that we have recently imple-
mented for dissipative molecular dynamics.14 This is a general
method applicable to models involving any Hamiltonian and
memory terms and provides an alternative to methods based
on path integrals,15-17 the introduction of auxiliary density

matrices,18 or an expansion of the memory kernel in a basis
set.19 Our treatment of dissipative dynamics is further applicable
to short times. It therefore bypasses the need to introduce
modified initial conditions (slippage)20,21in the implementation
of markovian treatments, and it can be applied to initial
excitations of varying duration.

We consider as an application of our method a model of
vibrational relaxation of an initially excited species adsorbed
on a metal surface, coupled to phonons in the metal reservoir,
and in particular, we concentrate on the systems CO/Cu(001),
Na/Cu(001), and CO/Pt(111) and on the relaxation of the
frustrated translation (or T-mode) of the adsorbate.2 This model
is based on extensive electronic structure calculations that gave
good agreement with experimental relaxation times for the CO/
Cu(001) system.22 It is known that metal electronic excitations
are also active in vibrational relaxation, but their role is less
pronounced for the low-energy T-mode.1 Our application deals
only with the contribution of phonons to relaxation. The
coupling constants between adsorbate vibrations and phonons
appearing in our model Hamiltonian contain a contribution from
intermediate short-lived electron-hole excitations of the metals,
but these are not explicitly considered in the present treatment.
In recently published work for these systems,23 we have obtained
good agreement with experimental measurements of the tem-
perature dependence of collisional line shapes, using such a
parametrized form for the coupling of adsorbate and surface† Part of the special issue “Donald G. Truhlar Festschrift”.

Figure 1. Pictorial representation of delayed dissipation from the
primary region to the secondary region over timest and t′.
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motions. We use the same values in the present work. The model
allows us to estimate under what conditions it would be possible
to replace delayed dissipation with instantaneous dissipation or
the Markov limit for the systems and conditions of interest here.

In what follows, we first present a brief description of the
density operator approach and a model Hamiltonian, which can
be used for either phonon or electron-hole excitations of the
metal surface. The numerical procedure is presented for integra-
tion of the coupled matrix integrodifferential equations in the
general case, with delayed dissipation. The special cases of
instantaneous dissipation and the Markov limit are also given.
Results on state populations and quantum coherence vs time
have been obtained for the systems Na/Cu(001), CO/Cu(001),
and CO/Pt(111) at several temperatures. Results are also
presented in the limit of instantaneous dissipation and in the
Markov limit. Calculations have furthermore been done for
varying coupling strengths. Finally, the time evolution of
quantum coherence has been considered and is reported for the
CO/Cu system.

2. Vibrational Relaxation of Adsorbates

2.1. Density Matrix Treatment. When studying dissipative
dynamics using the density matrix framework, we start with
the Liouville von-Neumann equation8,10 for the density operator
Γ̂(t) for the whole system, composed of a speciesA interacting
with the surface or reservoirR, and proceed to define a RDOp
F̂(t) ) trR[Γ̂(t)], which satisfies the following equation in
compact form,

whereL ) LH + LD is the Liouvillian superoperator. Here,LH

is defined by

The operatorLD contains dissipative terms and may take one
of several forms. It can generally be expressed in terms of a
memory kernel superoperator,K(t,t′), and the equation now
reads

This equation must be solved for the initial conditionF̂(0) )
F̂0 corresponding to the preparation of the system before
relaxation.

We are thus interested in numerical methods for equations
of the general form

which is a Volterra integrodifferential equation.
2.2. Model System.We treat the frustrated T-mode of the

adsorbate (the primary region or A subsystem) as a harmonic
oscillator bilinearly coupled to the surface (the secondary region
or R subsystem), treated as a reservoir of harmonic oscillators.
The Hamiltonian for the total system is then

whereâ and â† are the creation and annihilation operators for
the frustrated T-vibrational mode of the adsorbate A with
frequency ω0, b̂j and b̂j

† are the creation and annihilation
operators for the reservoir R excitations of frequenciesωj, and
the κj values are coefficients that determine the coupling
strength. Theâ and â† operators are related to the vibrational
displacementq̂ and momentump̂ of the adsorbate vibration.
The operatorsb̂j and b̂j

† are left undefined for now and may
correspond to normal mode displacementsQ̂j and momentaP̂j

for boson excitations, which can be phonons with spectral
density per unit frequencygph(ω) ) ∑j δ(ω - ωj) or quanta of
electronic density fluctuations with spectral densitygel(ω).24 If
we now define the operators

we have

whereq̂ is dimensionless, whileB̂ has the dimensions of energy.
We now have a coupling,ĤAR, which is factored into two
operators, one that acts only on the adsorbate and one that acts
over only the surface.

The energy eigenvalue problem for this Hamiltonian can be
formally solved using a transformation to normal modes of the
whole system, and the total density operatorΓ̂ can be formally
obtained in terms of normal mode amplitudes. Here, however,
we are interested in the solution of the equation of motion for
the RDOp and on the treatment of delayed dissipation due to
coupling of the p and s regions. A formally exact expression
can be obtained for the dissipative kernel of bilinearly coupled
oscillators. However, in what follows, we construct a simpler
expression, based on the well-known approximation to the
memory kernel to second order in the coupling.8,10 This relates
the dissipation to correlation functions of the reservoir (the
surface in our case) and provides insight on conditions under
which the dissipation might become instantaneous, or simply
represented by a time-independent friction coefficient. In
addition, we assume that the total density operator can be written
at all times asΓ̂(t) ) F̂(t) Γ̂eq(â), where the second factor is
given by the density operator of the reservoir at thermal
equilibrium at temperatureT ) 1/(kBâ).

The equation of motion forF̂ is written in terms of the basis
set{φr} of eigenstates ofĤA, with eigenenergiesEr ) p ω0(r
+ 1/2). The operator equation is transformed into a matrix-
valued generalized master equation for elements of the RDM10

dF̂(t)
dt

) LF̂(t) (1)

LHF̂ ) -
i
p

[H,F̂] (2)

dF̂(t)
dt

) LHF̂(t) + ∫0

t
K (t,t′) F̂(t′) dt′ (3)

dF(t)
dt

) g[t,F(t)] + ∫0

t
K[t,t′,F(t′)] dt′ (4)

Ĥ ) ĤA + ĤR + ĤAR (5)

ĤA ) p ω0 â† â (6)

ĤR ) ∑
j

p ωj b̂j
† b̂j (7)

ĤAR ) p ∑
j

κj (â
† b̂j

† + â† b̂j + â b̂j
† + â b̂j) (8)

q̂ ) 1

x2
(â† + â) (9)

B̂ ) p x2 ∑
j

κj (b̂j
† + b̂j) ) 2p ∑

j

κj Q̂j (10)

ĤAR ) q̂ B̂ (11)
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whereωrs ) (Er - Es)/p, ĤAφr ) Erφr, 〈〈 B̂ 〉〉 ) trR[B̂ Γ̂eq(â)],
qrs ) 〈φr| q̂ |φs〉, and

whereC(t) ) 〈〈 B̂(t) B̂(0) 〉〉 is the correlation function of the
vibrational displacements of the reservoir.

Note that

and that for our choice ofB̂, 〈〈 B̂ 〉〉 ) 0.
If we consider only the ground and first excited state for the

adsorbate, valid for temperatureskBT < p ω0 and initial low
excitation, then we arrive at the following expressions written
for atomic units wherep ) 1,

where we usedF00 + F11 ) 1. The time correlation function
can be written in terms of the spectral functionJ(ω) given by
ω2 J(ω) ) 2g(ω) |κ(ω)|2, and it takes the form

Because of the form ofqsr, there are no couplings between
the diagonal elements of the density matrix corresponding to
populations and the off-diagonal ones corresponding to quantum
coherence. If we consider more than two states, couplings do
appear.

Properties of the adsorbate varying over time can now be
obtained from the density matrix. In particular, the amount of
energy left in the adsorbate motion after its initial excitation is
obtained as∆EA ) EA(t) - EA(0), with EA(t) ) trA[F̂(t) ĤA],
which reduces in our model toEA(t) ) p ω0∑r)0

1 Frr(t) (r +
1/2) so that∆EA(t) ) -p ω0 F00(t)/2.

2.3. Instantaneous Dissipation and the Markov Limit.The
above equations include memory terms from the initial timet
) 0 to t, and we refer to this as the delayed dissipation case.

We consider two additional ways of dealing with dissipation,
applicable to cases where the correlation of reservoir amplitudes
decays rapidly with time, as compared to the period of vibration
of the adsorbate. This is likely to be the case when the reservoir
excitations are due to electronic fluctuations, with fast relaxation
times as compared to the adsorbate period. The first limit is
what we refer to as the instantaneous dissipation limit. If the
dissipation takes place in a short time during which the density
matrix remains nearly constant, then we can setF̂(t′) ) F̂(t) in
the equations, leading to expressions of the form

Here the superscript ID refers to the instantaneous dissipation
limit, and theI(t) andJ(t) integrals are

This approximation is valid when the kernel multiplyingF in
the integral is large aroundt ) t′ and close to zero everywhere
else.

If we further find that the upper limit of the integral can be
extended to infinity, we have the Markov limit, which looks
like

There is no time dependence inI or J so the equation can be
solved exactly, as

and is a special case of the multilevel Redfield equations.12 This
then gives the asymptotic limit for the population of the 0- th
state asF̂00(∞) ) -J(∞)/I(∞), a function of the temperature.
This agrees with the asymptotic form for the general case with
delayed dissipation, as can be seen integrating by parts the first
term to the right in eq 15 and taking the limitt f ∞.

2.4. Numerical Method.To begin, we write eq 4 in a more
compact form,

with

A generalized Runge-Kutta scheme then introduces time
increments∆t ) h and a sequence ofj ) 1 to m stages of
iteration, with valuesPn,j ) F(t0 + nh)(j) andZn,i ) z(t0 + nh)(i),
and uses the following relations13

d

dt
Frs ) -i ωrs Frs +

i

p
∑

c

〈〈 B̂ 〉〉 (qcs Frc - qrc Fcs) -

∑
cd

∫0

t
dt′ {Mcd,ds[-(t - t′)] eiωdr(t-t′) Frc(t′) +

Mrc,cd(t - t′) eiωsc(t-t′) Fds(t′) -

Mds,rc [-(t - t′)] eiωsc(t-t′) Fcd(t′) -

Mds,rc (t - t′) eiωdr(t-t′) Fcd(t′)} (12)

Mrs,cd(t) ) 1

p2
C(t) qrs qcd (13)

qrs ) qsr ) 1

x2
(δr,s+1xs + 1 + δr,s-1xs), qrr ) 0 (14)

d
dt

F00 ) - 1
2∫0

t
(4 cos[ω0 (t - t′)] Re[C(t - t′)] F00(t′) -

{C [-(t - t′)] e-iω0(t-t′) + C(t - t′) eiω0(t-t′)}) dt′ (15)

d
dt

F11 ) - 1
2∫0

t
(4 cos[ω0 (t - t′)] Re[C (t - t′)] F11(t′) -

{C [-(t - t′)] eiω0(t-t′) + C(t - t′) e-iω0(t-t′)}) dt′ (16)

d
dt

F01 ) i ω0 F01 - i ∫0

t
2Re[C(t - t′)] Im [F01(t′)] dt′

(17)

d
dt

F10 ) -i ω0 F10 - i ∫0

t
2Re[C(t - t′)] Im [F10(t′)] dt′

(18)

C(t) ) ∫0

∞ [cos(ωt) coth( p ω
2kBT) - i sin(ωt)] ω2 J(ω) dω

(19)

d
dt

F00
(ID)(t) ) F00

(ID)(t) I(t) + J(t) (20)

I(t) ) - ∫0

t
2 cos[ω0(t - t′)] Re[C(t - t′)] dt′ (21)

J(t) ) 1
2∫0

t
{C [-(t - t′)] e-iω0(t-t′) + C(t - t′) eiω0(t-t′)} dt′

(22)

d
dt

F00
(M)(t) ) F00

(M)(t) I(∞) + J(∞) (23)

F00
(M)(t) ) [F00

(M)(0) +
J(∞)

I(∞)] eI(∞)t -
J(∞)

I(∞)
(24)

dF(t)
dt

) f [t,F(t),z(t)] (25)

z(t) ) ∫0

t
K [t,t′,F(t′)] dt′ (26)

Pn,j ) Fn + h ∑
i)1

m

aji f [tn + ci h, Pn,i, Zn,i] (27)

Zn,i ) Fn (tn + ci h) + h ∑
l)1

m

ail K [tn + ci h, tn + cl h, Pn,l]

(28)
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wherem is the number of stages of the method and theaij, bi,
andci are real coefficients. The values chosen here are form )
4,13

The matrix version is straighforward and does not involve any
inversions, so it is readily applicable to many quantum states.
This method has been previously tested by us and found to be
reliable.14 It includes as special cases the propagation algorithm
for instantaneous and markovian dissipation. As expected, the
general case of delayed dissipation is more time-consuming,
insofar that it scales asNT

2, whereNT is the number of time
steps, instead of theNT scaling for instantaneous cases. However,
it involves only the physical matrix elements of the density
operator, unlike some of the alternative propagation methods.

3. Results for Populations and Quantum Coherence

So far, we have presented a treatment valid for a reservoir
with unspecified harmonic vibrations. In what follows, we
concentrate on adsorbate relaxation due to coupling to phonons
in the substrate.22 The couplingsκj contain contributions both
from direct coupling of vibrations and from their indirect
coupling through short-lived electron-hole excitations in the
metal and have been obtained from experiment.23 The phonon
frequenciesωj may be considered to form a continuum with
spectral densityg(ω).

The time-correlation function for the reservoir requires
knowledge of the spectral densityg(ω) and of the strengthκ-
(ω) of the coupling between adsorbate and surface. For the first
one, we use a simple Debye model so that

with g(ω) ) 0 for ω > ωD and whereN is the number of lattice
atoms andωD is the Debye phonon cutoff frequency. We use a
parametrization forκ(ω) in the neighborhood ofω0 from ref
23 of the form

wherep and q are parameters, which depend on the system;
the values of these and other parameters used in the calculations
are given in Table 1.

Therefore, the correlation function has been obtained from
the spectral function

whereJ(ω) ) 0 for ω > ωD.
For computational purposes, we constructC(t) in three parts.

The imaginary portion can be integrated exactly, so no ap-
proximation is required. For the real part, att ) 0, the cosine
term disappears and we can integrate the real part exactly.

However, for t > 0, this is not the case, and we use the
approximation

providedT is large enough andt > ∆t, a small value; for our
applications, it gives good agreement down to 100 K. For very
small values oft, the real part is obtained from an expansion
aroundt ) 0, and we useC(0) as the maximum value ofC(t).
This has provided accurate results over all times. Results for
the real and imaginary parts of the correlation function of CO/
Cu are shown in Figure 2 for temperatures of 150, 300, and
450 K. Because the imaginary part ofC(t) is independent of
temperature, only results for 150 K are shown. The time is given
in atomic units, with 1.0 au(T)) 0.0242 fs, and the correlation
function is in units ofp2. The imaginary part is relatively small,
and the real part oscillates out to about 50000 au(T), with a
period around 6500 au(T) or about 160 fs, close to the Debye
frequencyωD for Cu. It is seen that as the temperature goes up,
the decay of the oscillations is more pronounced.

We have obtained the elements of the RDM for each of the
systems Na/Cu, CO/Cu, and CO/Pt at 150 and 300 K, starting
with initial valuesF11 ) 1, F00 ) 0, andF01 ) 0. The results
for the populationF00(t) are shown in Figures 3-5, from which
the relaxation of the initialr ) 1 state population can be
followed, sinceF11 ) 1 - F00. In each case, higher temperatures
lead to decreased oscillation peaks and a faster relaxation to

Fn(t) ) h ∑
l)0

n-1

∑
j)i

m

bj K [t, tl + cjh, Pl,j] (29)

Fn+1 ) Fn + h ∑
j)1

m

bj f [tn + cjh, Pn,j, Zn,j] (30)

[aij] ) (0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

), [bi] ) (1/6
1/3
1/3
1/6

), [ci] ) (01/2
1/2
0

) (31)

g(ω) ) 18π N ω2/ωD
3 (32)

|κ(ω)|2 ) [p + q(ω - ω0)]/N (33)

J(ω) ) 36Nπ |κ(ω)|2/ωD
3 (34)

Figure 2. Real part ofC(t) for CO/Cu(001) at 150, 300, and 450 K
(upper) and the imaginary part ofC(t) for CO/Cu(001) at 150 K (lower).

TABLE 1: Frequencies and Coupling Parameters for
Different Systems

Na/Cu CO/Cu CO/Pt

ω0 2.205× 10-4 au-1 1.448× 10-4 au-1 2.183× 10-4 au-1

ωD 1.013× 10-3 au-1 1.013× 10-3 au-1 7.283× 10-4 au-1

p 2.31× 10-7 au-2 6.44× 10-8 au-2 1.10× 10-8 au-2

q -5.80× 10-5 au-1 1.58× 10-5 au-1 3.98× 10-6 au-1

coth( p ω
2kBT) ≈ 2kBT

p ω
+ p ω

6kBT
(35)
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equilibrium. For CO/Cu, the population of the ground stater
) 0 oscillates with a period around 2000 au(T) at both
temperatures. Comparing this with the decay time of the
correlation function, one concludes that the correlation of
reservoir vibrations does not decay rapidly enough to justify
an approximation of instantaneous dissipation. Similar conclu-
sions are reached for Na/Cu and CO/Pt. From Figure 3, the
CO/Cu populations are found to relax within about 4× 104

au(T), or about 1.0 ps, at 150 K, with this time increasing at
lower temperatures. This is in qualitative agreement with
experimental results.5

We have explored the dependence of population relaxations
on the adsorbate-surface coupling strength. In Figures 6 and
7, we plotF00 at 150 and 300 K for CO/Cu(001) at the values
of |κ|2 from the tabulatedp andq values and also atp andq
values multiplied by 0.8 and by 1.2. The observed trend is that

weaker couplings lead to longer relaxation times, as expected
due to decreased interaction with the reservoir.

The results for the instantaneous dissipation limit and the
Markov limit are shown in Figure 8 for CO/Cu(001) at 150 K.
In the Markov limit, the population goes smoothly and almost
immediately to the equilibrium value. The instantaneous dis-
sipation limit shows an unphysical behavior. In the case of 150
K, the population here goes above one, violating the positivity
of the density matrix, and it also shows repeating oscillations
at long times, after the population from the delayed dissipation
calculation has already reached equilibrium. It can be concluded
from this that the markovian limit is of some use if one needs
only long time results but that instantaneous dissipation would
not give a realistic picture of time evolution of populations.

Figure 3. Population of the ground state (F00) for CO/Cu(001) at 150
and 300 K.

Figure 4. Population of the ground state (F00) for Na/Cu(001) at 150
and 300 K.

Figure 5. Population of the ground state (F00) for CO/Pt(111) at 150
and 300 K.

Figure 6. Population of the ground state (F00) for CO/Cu(001) at 150
K for normal coupling strength and at 0.8 times the coupling strength.

Figure 7. Population of the ground state (F00) for CO/Cu(001) at 150
K for normal coupling strength and at 1.2 times the coupling strength.

Figure 8. Population of the ground state (F00) for CO/Cu(001) at 150
K using delayed dissipation, the instantaneous dissipation limit, and
the Markov limit.
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In all of the above cases, we set the initial quantum coherence
(F01 ) F10

* ) equal to zero, in which case it remains zero in our
model. Figures 9 and 10 show our results for real and imaginary
parts ofF01 using an initial value ofF01(0) ) 0.1 + 0.1i. The
imaginary part ofF01 shows a pattern of oscillations similar to
that in the populations at short times, followed by a slow
oscillation with a frequency of orderω0 relaxing to zero over
very long times. The real part shows only these slow oscillations.
Hence, here again, the treatment of dissipation must incorporate
memory effects. The density matrix elementF01 does not couple
to the populations in our model, as can be seen from eqs 17
and 18, so that our previous observations about population
changes with time and temperature remain valid.

4. Conclusion

We have described a general theoretical method applicable
to a quantum system evolving with delayed dissipation due to
its coupling to a medium. The treatment is readily applicable

to models where the medium undergoes bosonic excitations
(phonons or electron-hole pairs). A numerical procedure has
been described that can be used for a primary region with many
quantum states, coupled to a medium with a general distribution
of excitation energies.

As an application, we have calculated the populations over
time of the frustrated T-mode of an adsorbate on a metal surface
using the model of a harmonic oscillator coupled to a bath of
harmonic oscillators and have examined the effects of coupling
strength and the importance of memory terms. We have
presented results for a two-state model of the adsorbate for initial
conditionsF11 ) 1 andF00 ) 0 corresponding to an initially
excited adsorbate, without and with an initial quantum coher-
ence.

When the couplings are stronger, we see fewer oscillations
and a shorter relaxation time. This behavior is expected; the
dissipation of energy into the reservoir happens more rapidly
with a stronger interaction, and the system comes to equilibrium
sooner.

Each of the different treatments of dissipation lead to the same
equilibrium value, but the dynamics at short times are very
different. The delayed dissipation limit shows some strong
oscillations at short times before settling into equilibrium, and
their relaxation times agree in magnitude with experimental
values. In the markovian case, we see only a smooth exponential
rise nearly immediately to the equilibrium value. The instan-
taneous dissipation limit leads to oscillations around the
equilibrium value even at long times and does not appear to be
valid in this case, insofar that there are no experimental
indications of long-time oscillations. From the calculated trends
for varying coupling strength, it is found that stronger coupling
leads to faster decay of oscillations and that the markovian
dissipation more closely resembles delayed dissipation in this
case. This suggests that the Markov limit will be more accurate
at stronger couplings. At weak couplings, only the delayed
dissipation treatment will give accurate results. We see a similar
trend when looking at temperature effects. With higher tem-
peratures, we have fewer oscillations and a faster settling to
equilibrium. This suggests that the Markov limit will be more
accurate at high temperatures but that the delayed dissipation
treatment is required to study low-temperature dynamics at short
times.

Our calculations relate to a physical situation where excitation
of the adsorbate is brief, and we have started the numerical
propagation in time with the adsorbate initially in its first excited
vibrational state. However, our numerical procedure is general
and could also be applied to other situations such as excitation
by a long lasting light pulse or for conditions corresponding to
slippage of initial values of the density matrix due to an average
over an initial distribution of adsorbates. These situations may
lead to different patterns of oscillations at short times.

Experiments have been done with laser light pulses to probe
relaxation in the present systems25,26 and have measured
relaxation times of the order of picoseconds. It would be of
great interest to explore what happens in the femtosecond time
scale, to provide insight on both nonmarkovian phenomena and
the relative contributions of phonons and electronic excitations
to the relaxation times and quantum decoherence.

The equations and computational procedures presented in this
paper can also be applied to problems involving electronic
excitations at short times, as measured in femtosecond spec-
troscopy with visible or UV light. In our previous work on
femtosecond photodesorption,27,28we worked within an instan-
taneous dissipation limit due to the fast decay of electronic

Figure 9. Real part of the quantum coherenceF01 for CO/Cu(001) at
150 (solid line) and 300 K (dashed line).

Figure 10. Imaginary part of the quantum coherenceF01 at short times
for CO/Cu(001) at 150 and 300 K (upper) and long times (lower).
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excitations, which could now be reconsidered using the present
treatment. Statistical density matrices, with elements giving
populations and quantum decoherence, provide a suitable
language to describe and calculate the dynamics of electronically
excited systems,29-31 and together with temperature-dependent
dissipation terms, they can also be used for electronically excited
extended systems such as adsorbates on surfaces.
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